Combinatoria (II). Fórmulas de combinaciones, variaciones y permutaciones

¿Cuántos grupos diferentes de 4 personas podemos formar en una clase con 29 alumnos? ¿Cuántos formas diferentes hay de organizar los 9 libros de una estantería? ¿Cuántas clasificaciones diferentes (oro, plata y bronce) puede haber en una prueba de 100 metro lisos?

En la primera entrega del tema de combinatoria, compartía unos apuntes en los que resumía varias estrategias para conocer si nos enfrentamos a un problema de combinaciones, variaciones o permutaciones. Este es quizá el paso más complicado en la resolución de ejercicios de recuento, para aplicar generalmente en problemas de probabilidad. El siguiente paso es sencillamente aplicar las fórmulas correspondientes a cada tipo de problema de combinatoria, y es en esta segunda entrega de los apuntes donde explico cada una de ellas (para los casos sin repetición de elementos).

Apuntes | Ficha 2. Combinatoria (II). Fórmulas de combinaciones, variaciones y permutaciones
En Tiching | Combinatoria (II). Fórmulas de combinaciones, variaciones y permutaciones
Imagen | 100 Meters de Ken Slade en Flickr

Combinatoria (I). Combinaciones, variaciones y permutaciones

Cuando nos disponemos a aplicar la Regla de Laplace para calcular la probabilidad de un suceso A, necesitamos conocer el número de casos favorables y el de casos posibles:

Para un experimento como el de lanzar un dado, calcular el número de casos posibles es sencillo. Sabemos que existen 6 posibles resultados. Si el suceso objeto de estudio es “sacar par”, también podemos calcular mentalmente que son 3 los casos favorables (los resultados: 2,4,6).

Con estos datos, calcular la probabilidad del suceso A es inmediato: “sacar par con un dado”: P(A)=3/6=0,5 (un 50%).

Técnicas de recuento

Sin embargo, el problema se puede complicar. Imaginemos que el experimento que estudiamos es el lanzamiento, no de un dado, sino de 2 dados a la vez, y que el suceso objeto de estudio es “sacar suma par”.

Ahora el número de casos posibles ya no es 6. Y el número de casos favorables para “sacar suma par”, no es 3. En ambos casos son muchos más. Pero, ¿cuántos casos exactamente? Para calcular con exactitud la probabilidad de un suceso es necesario hacer un recuento exacto de los casos favorables y posibles. Y es aquí donde entra en juego la combinatoria.

Hay 18 formas diferentes de combinar los resultados de dos dados para obtener una suma par, de un total de 36 parejas posibles de resultados.

La probabilidad del suceso A “sacar sumar par con 2 dados” es: P(A)=18/36=0,5 (un 50%). El número de casos favorables y posibles es diferente y mucho mayor que con un solo dado (aunque observamos que la probabilidad vuelve a ser un 50%).

En general, se trataría de buscar métodos ordenados para no dejar ninguna combinación fuera. Podemos emplear estructuras en forma de matriz (como la tabla anterior), en forma de árbol, etc. para realizar un recuento ordenado.

Para unos pocos elementos podemos anotar todas las posibles combinaciones. Sin embargo, cuando el número de elementos crece considerablemente, se hace necesaria alguna fórmula que simplifique el cálculo de todas las combinaciones posibles. Por ejemplo, para calcular el número total de parejas del problema anterior, bastaría con aplicar una sencilla fórmula:

donde m (6) es el número de posibles resultados al lanzar un solo dado, y n (2) es el número de dados que utilizamos. Para este problema en particular, estaríamos aplicando la fórmula de variación.

De esta forma, dependiendo del tipo de problema – si el orden de los elementos es importante o si podemos repetir elementos – nos enfrentamos a distintos tipo problemas de combinatoria: combinaciones, variaciones y permutaciones, con y sin repetición.

¿C, V o P? ¿CR, VR o PR?

¿Cómo saber a qué tipo de problema de combinatoria nos enfrentamos? Básicamente, hay que plantear 3 preguntas:

  1. ¿Importa el orden? (O)
  2. ¿Se hacen subgrupos? (S) (si se utilizan todos los elementos, no se hacen subgrupos)
  3. ¿Se pueden repetir elementos? (R)

Ficha 1. Combinatoria (I). Combinaciones, variaciones y permutaciones

Comparto esta ficha que reúne los primeros apuntes sobre combinatoria. En breve, publicaré nuevos apuntes con fórmulas y varios ejemplos de aplicación.

Apuntes | Ficha 1. Combinatoria (I). Combinaciones, variaciones y permutaciones
En Tiching | Combinaciones, variaciones y permutaciones

Las probabilidades en la vida

El pasado 13 de mayo, La 2 de RTVE emitía el programa número 125 de Redes, dirigido y presentado por Eduard Punset. Con el título «Descifrar las probabilidades en la vida», Punset entrevista al matemático y divulgador científico Amir Aczel, con el que analiza muchas situaciones en las que tienen lugar ciertas coincidencias. En algunas existe una explicación inmediata, mientras que la respuesta a otras «casualidades» inexplicables, la podemos encontrar en la teoría de probabilidades. En ocasiones no es muy buena idea fiarnos de nuestra propia intuición para resolver algunos problemas o tomar determinadas decisiones en la vida. Amir Aczel afirma:

«La teoría de las probabilidades es la menos intuitiva de todas las ramas de las matemáticas»

(clic sobre la imagen para ver el programa)

Podría decir que la emisión ha sido un programa casi hecho a medida para recordar algunos de lo artículos sobre probabilidad publicados en este blog.

Hace más de un año publicaba «La intuición nos puede engañar, las matemáticas no». Contaba como en ocasiones la intuición puede hacer que nos equivoquemos en el momento de tomar una decisión. Podríamos elegir de forma incorrecta una opción entre varias, simplemente porque parece que es la más probable. Pero sólo aparentemente. Proponía como ejemplo un problema que refleja este juego de probabilidades. Es el conocido problema de Monty Hall.

Otro de los problemas que analiza el programa es «La paradoja del cumpleaños», un conocido problema matemático que plantea la siguiente pregunta: “¿Cuál es la probabilidad de que en un grupo de 23 personas 2 de ellas cumplan años el mismo día y mes? Publiqué la entrada «Experimento en redes sociales: la paradoja del cumpleaños» en la que propongo un pequeño experimento en redes sociales con este problema, que además intento explicar utilizando algunos conceptos de probabilidad.

Sobre coincidencias os recomiendo echar un vistazo a «De amig@s invisibles y cálculo de probabilidades», donde analizo la coincidencia de tener al mismo amigo invisible tres años consecutivos en un grupo de 45 personas. Y propongo hallar la probabilidad de este suceso, utilizando las funciones de cálculo para el lanzamiento de dados del buscador de respuestas Wolfram|Alpha.

También sobre el error de dejar llevarnos por nuestra intución, recientemente en «Azar y probabilidad: la falacia del jugador«, presentaba algunos ejemplos y recursos que pueden servir para motivar el tema de probabilidad en el aula de matemáticas: ¿Jugarías a la lotería con el número 01111? ¿y si ya hubiera tocado ese mismo número en las Navidades pasadas? ¿o es más probable jugar siempre al mismo número?

Durante la entrevista se plantea el experimento de lanzar un dado. Si se obtiene un «2» en los primeros 6 lanzamientos. ¿Es entonces menos probable que ocurra de nuevo en el séptimo lanzamiento? La intución podría indicarnos que sí. Sin embargo, la teoría matemática dice que la probabilidad sigue siendo la misma: 1 sobre 6.

Relacionado con este último experimento proponía una actividad con la hoja de cálculo para el aula de matemáticas, realizando con el ordenador simulaciones de experimentos de lanzamientos de dados cientos de veces para demostrar la Ley de los Grandes Números. Y con un enfoque más informático, publicaba «Trocitos de código (I). Lanzando una moneda millones de veces: ¿cara o cruz?» en el que planteo esta misma demostración con un lenguaje de programación.

RTVE | Descifrar las probabilidades en la vida

Probabilidad de la unión de sucesos (compatibles e incompatibles)

Supongamos el experimento de lanzar un dado. Existen 6 posibles resultados: 1,2,3,4,5 y 6. En un primer ejemplo, supongamos también dos sucesos A y B. El primero, A, se refiere al suceso «sacar menor que 5». El suceso B, «sacar número par».

Realizar el cálculo de la probabilidad de A es sencillo: 4 casos favorables de 6 posibles. Para el suceso B: 3 casos favorables de 6 posibles. Un 67% y un 50% respectivamente. Pero, ¿cuál es la probabilidad de la unión de ambos sucesos? Con otras palabras, ¿cuál es la probabilidad de que ocurra uno u otro? Si sumamos ambas probabilidades, obtenemos un 117%, lo cual es incorrecto. Las probabilidades siempre tienen un valor entre 0 y 1 (0% y 100%).

Sin embargo, con un segundo ejemplo en el que el suceso A es «sacar par» (50%) y B «sacar impar» (50%), la suma de probabilidades es correcta: un 100% (se trata de un suceso seguro; podemos afirmar rotundamente que o bien sale par o sale impar).

¿Por qué la suma de probabilidades «funciona» para el segundo ejemplo pero no para el primero? La clave está en la compatibilidad de los sucesos. En el primer ejemplo, los sucesos son compatibles. En el segundo, incompatibles. Y para responder a estas preguntas he preparado unos apuntes sobre el cálculo de la probabilidad de la unión de sucesos, compatibles e incompatibles.

Apuntes | Probabilidad de la unión de sucesos
En Tiching | Probabilidad de la unión de sucesos
Foto | Dice five de Doug Wheller en Flickr

Sucesos y la Regla de Laplace: ejercicios sobre probabilidad

La semana pasada publiqué un par de artículos sobre probabilidad. Con «La Ley de los Grandes Números y los 1000 lanzamientos de un dado» proponia una actividad con la hoja de cálculo para el aula de matemáticas, realizando con el ordenador simulaciones de experimentos de lanzamientos de dados.

Y con el recurso «Trocitos de código (I). Lanzando una moneda millones de veces: ¿cara o cruz?», empezaba una serie de artículos con ejemplos de programas escritos con algún lenguaje de programación y que resuelven algún problema concreto de matemáticas. Y empezaba con la simulación de millones de lanzamientos de una moneda.

Comparto esta semana una primera ficha de ejercicios sobre probabilidad. Se trata sobre cuestiones de experimentos de azar, definición de sucesos, operaciones de unión e intersección de sucesos, compatibilidad entre sucesos, análisis de frecuencias y cálculo de probabilidades aplicando la Regla de Laplace.

¿Y dónde encontrar más ejercicios?

Propongo realizar una búsqueda en Tiching para encontrar todo tipo de recursos sobre el tema. Introduciendo los términos «ejercicios de probabilidad» en el explorador, obtenemos una larga lista de recursos disponibles, que podemos filtrar según el nivel educativo (3º de ESO).

Ejercicios | Probabilidad (PDF, 2 páginas)
En Tiching | Ejercicios de Probabilidad

Trocitos de código (I). Lanzando una moneda millones de veces: ¿cara o cruz?

Hace unos días explicaba cómo realizar una simulación del lanzamiento de un dado utilizando las funciones de generación de número aleatorios y de recuento de la hoja de cálculo. Los resultados del experimento permitían comprobar la Ley de los Grandes Números.

Diseñar la hoja de cálculo que simula el experimento no entraña demasiada dificultad, si uno sigue los pasos indicados en la actividad y ha utilizado fórmulas de hoja de cálculo en alguna ocasión (recomiendo echar un vistazo a las fichas sobre OpenOffice Calc que preparé hace tiempo). Sin embargo, el entorno de hoja de cálculo no siempre es el más adecuado para realizar algunos experimentos. Cualquiera que intente aumentar el número de lanzamientos de dado de la actividad, comprobará que la memoria del sistema se resiente, y es más que probable que el ordenador se «cuelgue» durante algunos segundos. Los programas de ofimática son lo que son; no les podemos pedir más.

En realidad es una excusa para introducir una nueva sección en el blog: «Trocitos de código», entradas en las que comparto algún fragmento de código (conocidos en inglés como, Code Snippets) escritos con algún lenguaje de programación y que resuelve algún problema concreto. No es mi intención (de momento) explicar ningún concepto de programación, pero si despertar la curiosidad por este arte y utilizarla como herramienta para poner a prueba y comprender mejor algunos conceptos matemáticos.

Lanzamiento de una moneda

En esta ocasión propongo la simulación del lanzamiento de una moneda para comprobar de nuevo la Ley de los Grandes Números:

«La frecuencia relativa de un suceso tiende a estabilizarse hacia una constante a medida que se repite el experimento.»

En el caso de una moneda, en cada lanzamiento la probabilidad de que salga «cara» o «cruz» es exactamente la misma (son sucesos equiprobables), de modo que para cada posible resultado la probabilidad es del 50% (0,5 para «cara» y 0,5 para «cruz»).

La probabilidad de un suceso es la constante a la que se aproxima la frecuencia relativa cuando el experimento se repite muchísimas veces.

Simulación con Java: versión «mini»

Sabemos que debemos repetir el experimento de lanzar la moneda un número «muy grande» de veces. El siguiente fragmento de código escrito en Java realiza precisamente el experimento de lanzar una moneda. Por defecto lo hace 10 millones de veces (l=10000000) y cada 5000 lanzamientos (m=5000) muestra la frecuencia relativa hasta el momento. Lógicamente, estos valores se pueden cambiar.

Para modificar el problema, bastaría con utilizar cualquier editor de «texto plano» para realizar los cambios. Y para generar el programa final y probarlo, habría que disponer de un entorno de compilación y ejecución de Java. Bien, nada de esto es necesario. Existen en Internet algunos entornos de compilación y ejecución online, que permiten probar fragmentos de código. Este es el caso de rextester, una página web en la que podemos escribir nuestro código en varios lenguajes de programación y probar su funcionamiento, además de guardarlo y compartirlo con otros usuarios.

He utilizado este entorno para que podáis probar fácilmente la versión «mini» del programa que realiza la simulación del experimento (clic sobre la imagen del código). Una vez en la web de rextester, basta con hacer clic sobre «Run it» o darle a la tecla F8.

Simulación con Java: versión completa

La versión anterior utiliza el código mínimo (o casi) para realizar la simulación. Este segundo ejemplo de código, mucho más completo y con comentarios, muestra la simulación paso a paso, con los detalles de los lanzamientos de moneda.

Una vez lanzada la simulación, observamos los resultados del experimento. En cada fila aparecen 10 lanzamientos de moneda, con una C o una X, según el resultado de «cara» o «cruz» obtenido. Cada 10 lanzamientos se calcula la frecuencia relativa del suceso «sacar cruz». En los primeros lanzamientos, observamos que el valor de frecuencia relativa ronda 0,5 pero es inestable.

Sin embargo, a medida que el número de lanzamientos crece considerablemente, comprobaremos que la frecuencia relativa se va estabilizando y aproximando de forma más exacta al valor 0,5.

Simulación con GeoGebra

Este mismo experimento se puede realizar también con GeoGebra, un software para matemáticas del que ya he hablado en Esfera TIC en más de una ocasión. La simulación del experimento de lanzar una moneda se puede repetir 10, 100 y 1000 veces.

En Tiching | Lanzando una moneda millones de veces
Código 1 | Lanzamiento de una moneda (versión mini)
Código 2 | Lanzamiento de una moneda (versión completa)
Simulación con GeoGebra | Lanzamiento de una moneda
Foto código | Ruby ruby de Elliott Cable en Flickr
Foto moneda | Lucky Six – PCA 58 de Donald Macleod

La Ley de los Grandes Números y los 1000 lanzamientos de un dado

Recientemente compartía una serie de recursos para motivar el tema de la probabilidad en el aula, un área que tiene cierto éxito entre otros temas del libro. Comentaba que cuando se empiezan a introducir conceptos de teoría de conjuntos, combinatoria y otras formulas, muchas veces el interés por el tema ya no es el mismo. En la actividad TIC para el aula de matemáticas que propongo esta semana, se dan por estudiados ya varios conceptos de probabilidad (sucesos, Regla de Laplace, frecuencias, etc.) Es una actividad con la que el alumno puede comprobar por sí mismo, a través de simulaciones, como se cumple, por ejemplo, la Ley de los Grandes Números.

¿Cuál es la probabilidad de sacar un «6» con un dado? Suponemos, lógicamente, un dado de 6 caras, con las caras numeradas del 1 al 6 y en el que todas los posibles resultados (sucesos elementales) son igualmente probables (equiprobables). Todos diríamos 1 de 6, es decir, un 16,67 % de probabilidad de sacar un «6», o cualquiera de los posibles resultados. Acabamos de aplicar la Regla de Laplace para el cálculo de probabilidades: simplemente dividiendo el número de casos favorables (1, porque solo hay un «6») entre el número de casos posibles (6, porque hay 6 posibles valores), obtenemos dicha probabilidad.

Pero, ¿qué sucedería si repitiéramos el experimento de lanzar un dado varias veces, por ejemplo, 10? En cada lanzamiento, la probabilidad seguiría siendo del 16,67%, y podría salir el «6» o no. Podrían salir diez «6» o ninguno en los 10 lanzamientos. 10 es un número pequeño.

Sin embargo, ¿qué sucedería si en lugar de 10 lanzamientos repetimos el experimento con 100? ¿y con 1000? Bien, aquí entra en juego la Ley de los Grandes Números, que dice así:

«La frecuencia relativa de un suceso tiende a estabilizarse hacia una constante a medida que se repite el experimento.»

Recordemos que la frecuencia relativa de un suceso A (obtener un «6»), al realizarse un experimento N veces, se obtiene de dividir la frecuencia absoluta (las veces que sale el «6»), dividido por el número total de veces que se ha repetido el experimento.

Y, ¿hacia qué valor constante tiende a estabilizarse la frecuencia relativa del suceso «obtener un 6» cuando repetimos el experimento, por ejemplo, 1000 veces. Puedes comprobarlo en la gráfica, resultado de una simulación realizada con un hoja de cálculo, y que es el objetivo de esta actividad.

El valor se aproxima a algo más de 0,15, exactamente 0,167. ¿No es curioso que coincida con el valor que habíamos calculado con la Regla de Lapace? Y es que:

«La probabilidad de un suceso es la constante a la que se aproxima la frecuencia relativa cuando el experimento se repite muchísimas veces.»

Con el objetivo de comprobar que efectivamente la Ley de los Grandes Números se cumple, propongo una actividad para trabajar con las TIC, que consiste en diseñar una hoja de cálculo capaz de simular el experimento de lanzar “N” veces un dado.

La hoja de cálculo agrupará los lanzamientos de 10 en 10, para ir calculando automáticamente las veces que se obtiene un determinado resultado y la frecuencia relativa de tal suceso. Finalmente, se generará con el programa una gráfica que mostrará cómo la frecuencia relativa tiende a una constante.

La actividad

En el siguiente documento (PDF, 4 páginas), está detallada la actividad y las fórmulas de hoja de cálculo necesarias para generar números aleatorios y realizar los cálculos de frecuencias.

Actividad | La Ley de los Grandes Números (PDF, 4 páginas)
En Tiching | La Ley de los Grandes Números
Software | LibreOffice.org (incluye Calc, para diseño de hojas de cálculo)
Imagen Dados | Dice de Swiss Bones en Flickr

Azar y probabilidad: la falacia del jugador

Algo tiene la probabilidad que, incluso tratándose de matemáticas, tiene cierto éxito entre otros temas del libro. Al menos al principio. También es cierto que cuando se introducen conceptos de teoría de conjuntos, combinatoria y otras formulaciones, muchas veces la emoción por el tema se desvanece. En cualquier caso, parece que todo lo que tenga que ver con el juego, siempre atrae más al alumnado.

La probabilidad estudia los experimentos aleatorios o de azar. El cálculo de probabilidades trata de medir hasta qué punto puede suceder un fenómeno. Y en ocasiones nos sorprendería la probabilidad teórica de un suceso, frente a lo que pueda decir nuestro instinto.

Presento en este artículo algunos ejemplos y recursos que pueden servir para motivar el tema de probabilidad en el aula.

Números «feos» en la lotería… ¿pero improbables?

En 1903 tocó el Gordo de Navidad con el número 20297, y 103 años después, en 2006, volvió a salir el mismo número. Ocurrió también en 1956 y 1978, con el número 15560. La pregunta es, ¿jugarías estas Navidades a la lotería con algún número que ya hubiera salido años anteriores? Un primer impulso sería «jugar mejor a otro número», argumentando que ya tocó, y además, en dos ocasiones cada uno. Y si el número hubiera sido uno como el 01010, probablemente tampoco jugaríamos, pero por otros motivos: parece poco probable.

Hay números que a primera vista parecen más probables, y de otros números diríamos que es imposible que salieran en un sorteo. Por otro lado, existe en muchos lugares la tradición de jugar al mismo número cada año (con la creencia de que así aumentan las probabilidades). Nada de esto es cierto. Pensar que los sucesos pasados afectan a los futuros en lo relativo a actividades aleatorias, como en muchos juegos de azar, es lo que se conoce como la falacia del jugador.

La falacia del jugador: cuando la intuición falla

El programa tres14 hablaba precisamente sobre el fenómeno, de cómo al jugar a la lotería, hay números que nos despiertan más confianza que otros. Por ejemplo, si tuviéramos que elegir entre jugar al 03333 o al 25687, una gran mayoría optaría por el segundo, cuando sabemos que uno u otro son igualmente probables.

La falacia del jugador puede comprender varias ideas equivocadas. La primera es que un suceso aleatorio tiene más probabilidad de ocurrir porque no ha ocurrido durante cierto periodo. Por ejemplo, si al lanzar una moneda 10 veces ha salido cara, quizá pensemos que es más probable que salga cruz en la siguiente tirada, cuando en realidad, en cada lanzamiento de moneda, sacar cara y cruz son sucesos equiprobables.

Otra razonamiento erróneo es que un suceso aleatorio tiene menos probabilidad de ocurrir si ocurrió recientemente. Volviendo al ejemplo de la lotería, podríamos pensar que si durante dos años consecutivos ha tocado el mismo número en nuestra ciudad, es muy improbable que vuelva a suceder. En realidad, podríamos decir cada año «se pone el contador a cero» en lo que a probabilidades se refiere. El hecho de que haya tocado la lotería el año pasado no influye en la probabilidad de que toque dicho número de nuevo en las Navidades de este año.

Otro ejemplo de falacia es un clásico chiste de matemáticos, que dice así:

Cuando vuela en avión, un hombre decide llevar siempre una bomba consigo. «Las probabilidades de que en un avión haya una bomba son muy pequeñas —razona—, ¡así que las probabilidades de que haya dos son casi nulas!»

Seguramente nosotros no haríamos nunca un razonamiento como el del viajero en el avión, pero en otras situaciones sí podríamos dejarnos llevar por el instinto y equivocarnos en nuestra decisión (de realizar una apuesta, por ejemplo).

Sucesos aparentemente improbables

¿Apostarías algo a que en un grupo de 23 personas al menos 2 cumplen años el mismo día? Seguramente la primera respuesta intuitiva es «no». Sin embargo, sabiendo que la probabilidad es de más del 50%, quizá valdría la pena arriesgar. Este problema se conoce como la paradoja del cumpleaños, que expliqué ya con un caso práctico, un experimento con grupos de contactos en una red social.

Otro ejemplo que demuestra que debemos fiarnos más de las matemáticas que de nuestro propio instinto es el conocido problema de Monty Hall. La explicación detallada de por qué la opción aparentemente menos probable tiene en realidad el doble de probabilidad, la publiqué en «La intuición nos puede engañar, las matemáticas no». Un buen resumen es esta escena de la serie Numbers:

Falacia del jugador | Wikipedia | Programa tres14: «Curiosidades científicas – Nuestra intuición falla con el azar»
Reportaje | Loterías, retando a la probabilidad
El problema de Monty Hall | La intuición nos puede engañar, las matemáticas no
La paradoja del cumpleaños | Experimento en redes sociales

De amig@s invisibles y cálculo de probabilidades

Lo que ha sucedido este año podría parecer imposible. Sin embargo, sólo es improbable. Organizamos cada año el juego del amigo invisible entre profesores y otros compañeros de nuestro colegio. Alrededor de 45 personas. Y por tercera vez consecutiva, he vuelto a sacar el mismo nombre de la cesta. ¿Qué probabilidad hay de que esto suceda?

Se trata de un típico problema de probabilidades y, buscando similitudes con un problema de lanzamiento de dados y con ayuda de las TIC (el buscador de respuesta Wolfram|Alpha),  podemos realizar el cálculo rápidamente.

Se organiza el juego del amigo invisible tres Navidades seguidas. Los tres eventos son, por tanto, independientes entre sí. Es decir, sacar un papel con un nombre de un cesta con otros 44 nombres, es un experimento aleatorio que no depende de lo que sucediera el año pasado. Son por tanto sucesos independientes. Hagamos primero un cálculo teórico:

Definiendo los 3 sucesos independientes:
A = «sacar X como amig@ invisible» (en 2009)
B = «sacar X como amig@ invisible» (en 2010)
C = «sacar X como amig@ invisible» (en 2011)

y suponiendo que en los tres experimentos participa el mismo número de personas, 45 (el número de asistentes es entre 40 y 50), la probabilidad de sacar el nombre X de la cesta es:

P(A) = P(B) = P(C) = 1/45

La probabilidad de la ocurrencia conjunta de los 3 sucesos, que llamaremos «probabiliad de triamigo» es:

El cálculo de probabilidades para el experimento del amigo invisible es exactamente el mismo que el de calcular la probabilidad de obtener 3 caras iguales (por ejemplo «6»)  lanzando 3 dados de 45 caras.

El lanzamiento de dados es un ejemplo clásico cuando uno empieza a estudiar los primeros conceptos de la teoría de probabilidades. Como no podría ser de otra forma, el buscador de respuestas Wolfram|Alpha cuenta con estas funciones de cálculo. Escribiríamos como términos de búsqueda:

3 sixes on 3 45-sided dice

(3 seises en 3 dados de 45 caras)

Observamos que el resultado es exactamente el mismo: existe una 1 posibilidad entre 91125 de que te toque 3 años seguidos el mismo amigo invisible. Y a mí me ha sucedido este año. Historia real.

Ejemplos Wolfram|Alpha | Ejemplos con lanzamiento de dados
Un caso práctico | Lanzamiento de 3 dados con 45 caras

Experimento en redes sociales: la paradoja del cumpleaños

Lanzo la siguiente pregunta:

¿Cuál creéis que es la probabilidad de que al menos 2 personas de un grupo de 23 cumplan años el mismo día y mes?

Si nos apresuramos en responder a la pregunta, quizá la primera suposición será que es muy improbable que dos fechas coincidan. Como en el problema de las tres puertas que ya expliqué, la intuición nos puede engañar en este caso también.

La «paradoja»

De una forma sorprendente para algunos, la probabilidad de que 2 personas de un grupo de 23 cumplan años el mismo día y mes es de más del 50%. Es más, el mismo planteamiento para un grupo de 60 personas o más da un resultado del 100% de probabilidad. Pero… ¿cómo puede ser?

Se trata de la llamada «paradoja del cumpleaños», que por cierto no es paradoja, porque no es una contradicción lógica. Sencillamente, los resultados van en contra de lo que nuestra intuición podría suponer, pero los podemos comprobar matemáticamente. Pero antes de detallar los cálculos propongo un experimento.

El experimento

Os propongo visitar vuestro perfil en cualquiera de las redes sociales en las que habitualmente publicáis y participáis. Esta vez, sin embargo, el propósito es otro distinto. Si lo hacéis en Facebook, donde probablemente tenéis varias decenas de amigos, consultad la sección de eventos, concretamente la de cumpleaños. Allí encontraréis la lista completa de fechas de cumpleaños de vuestros contactos, agrupadas por meses.

El experimento es simple: comprueba cuántas personas (o grupos de personas) comparten fecha de cumpleaños.

En mi caso, en Facebook tengo un total de 184 amigos. He encontrado 25 pares de contactos que comparten fecha de cumpleaños (+1 grupo de 3 personas que también nacieron el mismo día y mes). Es decir, casi el 30% de mis contactos comparten fecha de cumpleaños con alguien. ¿Increíble, no?

Si también has contado los amigos cuya fecha de cumpleaños coincide, introduce por favor los datos en el siguiente formulario. Me servirá para hacer un pequeño estudio, de los de «andar por casa».

Y para los más curiosos, aquí tenéis la explicación matemática

¿Cómo calcular la probabilidad?

Pensemos que queremos calcular la probabilidad del suceso «que 2 fechas de cumpleaños coincidan». Sin embargo, lo más práctico para este problema es calcular el suceso contrario: «que 2 fechas de cumpleaños no coincidan».

Para ello utilizamos la Regla de Laplace de probabilidad, que dice que la probabilidad de un suceso S es:

Lógicamente tendremos que analizar por separado los casos posibles y los casos favorables.

Casos posibles

Para calcular el número de combinaciones posibles de fechas de cumpleaños de 2 personas (A y B), basta con multiplicar 365 dos veces. Imaginemos un instante ejemplos de combinaciones, para hacernos una idea que hay «unas cuantas»:

  • A cumple el 1 de enero y B el 1 de enero
  • A el 1 de enero y B el 2 de enero
  • A el 1 de enero y B el 3 de enero,
  • …,
  • A el 2 de enero y B el 1 de enero,
  • A el 2 de enero y B el 2 de enero,
  • Y así todas los posibles pares hasta llegar a la combinación.

  • A el 31 de diciembre y B el 31 de diciembre.

El número total de combinaciones para 2 personas es 365·365 o 365^2

El número total de combinaciones de cumpleaños para n personas es 365^n (365 elevado a n)

Casos favorables

Para calcular el número de casos favorables, esto es, número de combinaciones de fechas que no coincidan (recordemos que estamos calculando el suceso «no hay dos personas que cumplan el mismo día y mes»), podríamos proceder de la siguiente forma:

Elegimos a una primera persona, A, que puede cumplir cualquiera de los 365 días. La probabilidad de que una segunda persona B coincidiera en fecha sería de 1/365. Por tanto, la probabilidad de que no coincida es de 364/365. Si tomamos una tercera persona C, la probabilidad de que coincida con A o B es de 2/365. Y por tanto, la probabilidad de que C no coincida con A o B es de 363/365. Si procedemos del mismo modo con el resto de personas del grupo, estaremos calculando la probabilidad de cada suceso «que la fecha de la persona X no coincida con ninguna de las otras».

Bien, al tratarse de sucesos independientes, para calcular la probabilidad de que ocurran todos, bastaría con multiplicar cada una de las probabilidades de la siguiente forma:

Que podríamos unificar en una sola expresión utilizando la siguiente fórmula:

Os dejo la comprobación de la fórmula para el caso de 5 personas (n=5).

Con esta «sencilla» fórmula podríamos elaborar una gráfica representando la probabilidad de coincidencia de 2 fechas de cumpleaños en función del número de personas del grupo, en la que podemos comprobar que para 23 personas la probabilidad de que dos de ellas hayan nacido el mismo día supera el 50%. Para 60 personas o más, asciende hasta casi el 100%.

Sobre la Paradoja del Cumpleaños en: Wikipedia | Gaussianos